Romove

Kad ar standarta objektīviem nepietiek

Romove specializējas optisko risinājumu izstrādē liela attāluma novērošanas pielietojumiem, kuriem nepieciešama augstāka izšķirtspēja, plašāks spektrs, kompakts formāts vai liela laukuma attēlveidošana. Mūsu pieredzējusī komanda izstrādā individuālus risinājumus, kas tehnisko datu ziņā pārspēj standarta objektīvus.

Individuāli izstrādātas optiskās sistēmas

Ja gatavie objektīvi neatbilst jūsu specifiskajām prasībām, Romove piedāvā savus optiskos risinājumus, lai nodrošinātu tieši jūsu vajadzībām atbilstošu rezultātu. Standarta komerciālie objektīvi parasti tiek konstruēti plaša tirgus pielietojumiem, kur galvenais mērķis ir zema vienības cena. Tomēr, ja Jūsu lietojumam nepieciešama augstāka izšķirtspēja, plašāks optiskais spektrs, kompakts risinājums vai liela formāta attēlveidošana, varam palīdzēt, jo standarta objektīvi bieži liek piekāpties vienā vai vairākos optiskās veiktspējas aspektos.

Šādi kompromisi parasti nozīmē zemāku tehnisko veiktspēju un var mazināt konkurētspēju, kas galu galā ietekmēs peļņu. Tāpēc arvien pieaug pieprasījums pēc individuāli izstrādātiem objektīviem, kas pielāgoti katra lietojuma precīzajām vajadzībām.

Romove pieredzējusī komanda izstrādā augstas izšķirtspējas optiku, kas uzlabo attēla kvalitāti pārspējot katalogā pieejamos risinājumus gan veiktspējas, gan efektivitātes ziņā. Balstoties uz gadu desmitiem ilgu pieredzi mēs nodrošinām, ka izstrādes process atbilst visaugstākajām prasībām.

Magnetometer
Optical Systems
Optical Systems
Hyperspectral Imaging

Pielāgoti optiskie risinājumi

Romove izstrādā konkrētam pielietojumam paredzētu optiku, kas sniedz vairāk nekā standarta objektīvi — nodrošinot augstāku veiktspēju izšķirtspējas, spektrālā diapazona un formāta ziņā.

Augstas izšķirtspējas inovācijas

Mūsu optiskās sistēmas nodrošina difrakcijas limitētu izšķirtspēju visā attēla laukā, piedāvājot skaidru attēlu tālas distance novērošanas un zinātniskiem pielietojumiem.

Multispektrālā novērošana

Mēs izstrādājam kompaktas, jaudīgas optiskās sistēmas, kas apvieno redzamās gaismas, īsviļņu infrasarkano (SWIR) un termālo attēlveidošanu vienā attēlā. Tās ir piemērotas liela attāluma novērojumiem aizsardzībai, robežkontrolei un bezpilota lidaparātiem (UAV).

Hiperspektrālās tehnoloģijas

Romove ir izstrādājusi hiperspektrālo optiku Zemes novērošanai, lauksaimniecībai un ģeoloģijai, atrisinot kompromisus starp telpisko un spektrālo izšķirtspēju, kā rezultātā optiskā siste’ma vienlaiks ir gan augsta spektrālā, gan arī telpiskā attēla izšķirspēja (pagaidām tirgū tiek piedāvātas hiperspektrālās kameras ar augstu spektrālo izškirtspēju bet miglainu attēlu.)

Uzlabota magnetometrija

Mūsu optiskais magnetometra sensors nodrošina femtotesla līmeņa jutību un reāllaika daudzdimensionālu magnētiskā lauka kartēšanu zinātniskiem un industriāliem mērķiem.

Pieredze inženierijā

Ar vadošo zinātnieku vairāk nekā 35 gadu pieredzi un dziļu izpratni par optikas fiziku Romove ir izstrādājusi augstas veiktspējas sistēmas.

Par Romove

ROMOVE zinātnieki jau vairāk nekā 35 gadus izstrādā multi un hiperspektrālus optiskos risinājumus augsto tehnoloģiju pielietojumam, konsekventi nodrošinot inovatīvus un modernus optiskos risinājumus.

Pateicoties plašai pieredzei optisko tehnoloģiju jomā, mēs izcili veicam gan pilnu sistēmu, gan apakšsistēmu izstrādi — īpaši optiskajā novērošanā. ROMOVE specializējas ļoti augstas veiktspējas optiskajās sistēmās ar pielietojumu aizsardzības un drošības, hiperspektrālās attēlveidošanas un liela attāluma novērošanas jomās.

Mūsu pieredzējušā optisko dizaineru komanda izprot katra klienta tehnoloģijas pamata fizikas principus, ļaujot mums piedāvāt radošus, konkrētam pielietojumam pielāgotus risinājumus. Mēs lepojamies ar to, ka katram projektam nodrošinām augstas kvalitātes optiskās un mehāniskās projektēšanas novērtējumus.

ROMOVE ir aprīkota ar tehnologijām lai ražotu nelielus daudzumus ļoti augstas veiktspējas optisko sistēmu, pielāgotu jūsu specifiskajām vajadzībām. Mūsu optikas un mehānikas dizaina speciālistiem ir pierādīta pieredze, ko apliecina vieglu, augstas izšķirtspējas skenēšanas kameru izstrāde aviācijas un bezpilota gaisa kuģu pielietojumam.

Inovācijas

Augstas izšķirtspējas optisko sistēmu projektēšana ir sarežģīta,, un esošie rīki un metodes bieži vien nedod iespēju radīt inovatīvus risinājumus. Romove ir izstrādājis revolucionāru optisko arhitektūru, kas daudzkāršo izšķirtspēju salīdzinājumā ar standarta sistēmām, saglabājot kompakto izmēru un efektivitāti. Tā ir ideāli piemērota optiskajiem bezvadu sakariem, Zemes novērošanai, precīzajai lauksaimniecībai un nelieliem satelītiem.

For long distance high-resolution surveillance applications, the optical system design has traditionally been a significant challenge. Designing optical systems is inherently complex due to the intricate behavior of light, requiring extensive expertise to achieve optimal performance.

There is a critical shortage in the photonics industry of graduates and PhDs with broad expertise in modeling and designing industrially relevant optical systems. This gap is exacerbated because most practical design methodologies rely heavily on the prior experience of designers and the capabilities of existing optical design software such as Zemax, Oslo, and TracePro. While these programs employ various optimization methods and are well-suited for routine projects, they often fall short when it comes to pioneering entirely new designs. Optical design software also faces inherent limitations. Light exhibits a wave-particle duality -sometimes behaving like a wave, other times like a stream of fast particles called photons. This fundamental duality remains one of nature’s mysteries, and in practice, designers use whichever model simplifies calculations. Moreover, mathematical models in these software tools assume ideal conditions – illumination is never perfectly monochromatic or collimated in reality, and coatings are not uniform ideal layers.

At the heart of multispectral and hyperspectral camera devices lies the optical system. We have developed a revolutionary designs that achieves several times better optical resolution in long distances compared to other cameras with the same aperture size. Our optical system delivers exceptionally high resolution across nearly the entire image area and over a broad spectral range.

Pēdējo gadu desmitu laikā pētnieki ir izstrādājuši daudzus hiperspektrālās Zemes novērošanas (EO) attālinātās uztveres paņēmienus, analīzes un pielietojumus. Hiperspektrālie izpētes sensori ir pierādījuši savu potenciālu, un tehnoloģija, kas izmantojama hiperspektrālajās attēlveidošanas sistēmās (HIS), ir būtiski attīstījusies. Šīs ierīces ļauj vienlaikus iegūt datus daudzās šaurās, savstarpēji saistītās spektrālajās joslās, atverot plašu pielietojumu klāstu.
Even though hyperspectral imaging technology designed for drones has made significant advances in software and data processing over the past several years, it is still lacking in development of optical systems for better resolution, also in size and weight reduction. The small size systems operating at present are designed as low sensitivity cameras and lack high resolution capabilities, since these systems sacrifice considerable spatial resolution to increase the spectral resolution. The utility of captured data for video analysis applications is limited. There is still a strong need for higher spatial resolution at higher spectral resolution and more spectral bands.

Today’s HIS market is saturated with low spatial resolution cameras, while commercially available high-resolution hyperspectral imaging systems remain large and heavy, rendering them impractical for drones and small satellite platforms. This challenge stems from inherent trade-offs in conventional optical designs between spectral resolution, spatial resolution, and signal-to-noise ratio. Our innovative optical system overcomes these limitations by delivering a compact, lightweight solution that maintains exceptional performance, making it perfectly suited for small satellites and other demanding applications.

Hyperspectral Imaging

Hiperspektrālā attēlveidošana

Īpaši augsta izšķirtspēja Zemes novērošanai
Mūsu inovatīvais optiskais dizains daudzkāršo standarta sistēmu izšķirtspēju — tas piemērots lauksaimniecībai, ģeoloģijai, katastrofu seku novēršanai un vides monitorēšanai no nelielām satelītu platformām.

Multispektrālā novērošana

Border and coastal monitoring
Compact, high-resolution optical systems that fuse SWIR, visible, and thermal imaging - capable of identifying people and vessels up to 20 nautical miles away, even in fog or darkness.

Magnetometer

Optiskais magnetometrs

Precīza magnētiskā lauka kartēšana
Balstoties uz optisko daudzpunktu sensoru tehnoloģiju, mūsu magnetometrs nodrošina jutību femtotesla līmenī ģeofizikai, biomedicīniskajai attēlveidošanai, rūpnieciskajai testēšanai un kosmosa zinātnei.

Hyperspectral imaging application

Advancements in technology over the coming years are expected to transform hyperspectral imaging (HSI) into a mainstream tool for agriculture, forestry, and related fields. This project introduces an emerging UAV-based aerial remote sensing HSI camera concept aimed at addressing these needs.

1. Vegetation Classification Hyperspectral imagery has proven to be a cost-effective method for vegetation classification, enabling differentiation among various classes such as forest types (fallow, primary, secondary forests) or tree species. However, complex agroecosystems present challenges due to the medium spatial resolution of current hyperspectral sensors. The development of next-generation hyperspectral sensors with higher technology and improved signal-to-noise ratio (SNR) is expected to enhance the accuracy of vegetation discrimination significantly.

2. Pest Detection and Mapping Accurate detection of agricultural and natural vegetation pests—including invasive species and diseases—relies on capturing pure pixels. The medium spatial resolution of existing sensors limits the ability to detect invasive species that occur in small patches or linear formations. Enhancing spatial resolution is therefore critical for effective pest monitoring, stress detection, and the advancement of precision agriculture.

3. Biophysical Parameters Estimation Beyond vegetation classification, hyperspectral imaging facilitates monitoring of various biophysical parameters in natural and agricultural vegetation. One widely estimated parameter is Leaf Area Index (LAI). The short-wave infrared (SWIR) portion of the spectrum is particularly effective for LAI retrieval due to its sensitivity to pigments, water, and other biochemicals. Studies show that higher spatial resolution hyperspectral data can significantly improve biophysical parameter estimation, including more accurate LAI predictions.

4. Geological Applications Hyperspectral sensors are primarily used in geology for surface composition mapping. The accuracy of geological maps depends heavily on the sensor’s SNR and spectral capabilities. However, none of the current sensors adequately capture the full diversity of surface materials within studied areas, highlighting the need for improved hyperspectral designs.

5. Soil Applications Soil studies, such as salinity mapping, utilize specific SWIR bands to generate quantitative salinity maps with moderate accuracy. Medium spatial resolution is generally sufficient for regional soil assessments. However, when it comes to detailed erosion mapping related to land use, current spatial resolution is a limiting factor. Thus, spatial resolution remains a critical challenge for accurate fine-scale soil parameter retrieval.

6. Land Cover Applications Land cover classification achieves varying success based on the targeted class. Sparse vegetation, heterogeneous agricultural zones, burnt areas, and transitional land uses pose particular difficulties. Although the high spectral resolution and narrow bandwidths of existing satellites offer significant advantages, low spatial resolution hampers effective classification of complex and heterogeneous landscapes.

7. Urban Applications HSI sensors like Hyperion have shown improved classification of major urban surfaces such as non-impervious materials, concrete structures (large buildings, industrial/commercial zones), asphalt parking lots, and paved roads. However, only three principal urban cover types—vegetation, paving, and roofing—are reliably identified. Higher spatial resolution airborne sensors such as MIVIS demonstrate superior performance. Overall, the spatial resolution of typical hyperspectral systems limits accurate mapping of smaller-scale urban features like industrial rooftops, parks, urban forests, and open fields.

8. Disaster Applications Hyperspectral cameras are increasingly employed in disaster prevention and post-event monitoring. However, limitations in SWIR signal-to-noise ratio have hindered effective wildfire prevention and monitoring, restricting the broader application of hyperspectral technology in disaster management.

This summary highlights the critical role that improved spatial resolution and advanced sensor technologies will play in unlocking the full potential of hyperspectral imaging across a wide range of environmental and industrial applications.

Technical data sheet

Multispectral security & defense long range imaging camera for coastal border surveillance, ship and UAV/drone detection

Romove have developed innovative optical system technology that relies on a unique shape lense and mirrors to deliver a compact, energy efficient, and inexpensive wide-spectrum system that can provide high-resolution images with minimal distortion.

Romove multispectral optical system is a breakthrough technology that provides superior performance and capability. Proposal is narrowly focused on the optical system for the long range visual sea shore observation network to detect man, ships and small vessel sized objects at a long distance and in harsh terrains with combined Visual/SWIR/thermal camera solutions. With these imaging cameras protecting your borders and frontiers, you can rest assured that infiltrators will be quickly identified.

Multispectral cameras can “see” through challenging atmospheric conditions, including haze, mist, rain, and fog. SWIR cameras are used to a limited extent, however, all commercially available technologies has significant limitation – rather poor spatial resolution. Photonic newly designed multispectral camera uses improved optical technology to deliver images with a greater level of detail than ever before. This new optical system, which boasts the latest Short Wave Infra-Red (SWIR) and Visible Light sensors, delivers images with at least 4 times the resolution of alternatives available in the market today. Our optical design allows for high image quality at very low distortion, and will provide operators with an improved surveillance and reconnaissance situational awareness capability.

Romove will bring their engineering expertise to design and bring to market an innovative and industry-leading multispectral optical system capable of integrating with other systems and delivering images of outstanding clarity at extreme distances and through adverse conditions

This optical system brings multiple performance improvements over alternative designs, including:

1)  Diffraction-limited resolution–limited by physics rather than optical design

2)  High resolution over the entire image field–not just at the center

3)  High optical power, delivering extremely positive low-light performance

4)  Ability to present high resolution images at distances of 20 nautical miles

5)  Extremely low spatial and spectral distortion

6) Multi spectrum capability–enabling simultaneous SWIR and VIS spectra range.

7) Compact design for long focal lengths

Optical Magnetometer Sensor Based on Optical Multipixel Technology

Sensory magnetometers are highly sensitive devices used to detect and measure magnetic fields. They have a wide range of applications across various fields due to their precision and ability to operate in diverse environments. Sensory magnetometers has wide range of applications:

  1. Geophysical and Geological Exploration, Mineral Exploration. Oil and Gas Exploration
  2. Navigation and Orientation, Aerospace and Aviation. Marine Navigation. Robotics: 3. Military and Defense. Detection of Submarines and Mines. Surveillance. Unexploded Ordnance Detection.
  3. Environmental Monitoring. Space Weather Monitoring. Earthquake Prediction. Pollution Monitoring.
  4. Industrial Applications. Non-Destructive Testing (NDT). Metal Detection.
  5. Archaeology and Forensics. Archaeological Surveys. Crime Scene Investigation:
  6. Space Science. Planetary Exploration. Satellite Operations.

The optical magnetometer sensor, leveraging cutting-edge Optical Multipixel Sensor (OMS) technology, represents a breakthrough in detecting magnetic fields with exceptional sensitivity and spatial resolution. By integrating optical magnetometry principles with a multipixel array design, this sensor delivers unparalleled performance across scientific, industrial, and medical domains. 

Optical magnetometers operate by exploiting how magnetic fields influence atomic or molecular properties. The OMS-based sensor detects magnetic field variations through light-matter interactions, including:

: Magnetic fields induce splitting of atomic energy levels, detected as changes in light polarization or intensity.

: The polarization plane of transmitted polarized light rotates proportionally to magnetic field strength, enabling direct measurement.

: The sensor incorporates atomic vapor cells coupled with optical readout arrays, allowing for precise magnetic field detection.

The optical multipixel array captures spatially resolved magnetic field data in real time, enabling detailed magnetic field mapping with high accuracy.

: Detects magnetic fields at femtotesla (fT) levels.

: The multipixel array architecture minimizes sensor size without compromising functionality or resolution.

Real-Time, Multi-Dimensional Mapping: Facilitates dynamic visualization of magnetic fields over space and time.

: Ideal for applications that require minimal interference, such as biomedical imaging.

: Enables advanced modalities like magnetocardiography (MCG) and magnetoencephalography (MEG).

: Facilitates detailed mapping of underground mineral deposits and resource exploration.

: Supports non-destructive testing and quality assurance in manufacturing processes.

: Provides precise magnetic field measurements essential for quantum physics and material science investigations.

The optical magnetometer sensor, leveraging advanced optical multipixel sensor (OMS) technology, represents a cutting-edge solution for detecting magnetic fields with high sensitivity and spatial resolution. By combining the principles of optical magnetometry and multipixel array design, this sensor offers unparalleled performance for scientific, industrial, and medical applications. 

Features and Advantages

  1. High Sensitivity: Capable of detecting magnetic fields as low as femtoteslas (fT).
  2. Compact Design: The multipixel array minimizes the sensor footprint without compromising functionality.
  3. Real-Time Mapping: Enables dynamic visualization of magnetic fields across multiple dimensions.
  4. Non-Invasive Operation: Ideal for applications requiring minimal interaction with the environment, such as biomedical imaging.

Applications

  • Medical Imaging: Advanced imaging techniques like magnetocardiography and magnetoencephalography.
  • Geophysical Surveys: Mapping underground mineral and resource distributions.
  • Industrial Monitoring: Non-destructive testing and quality assurance in manufacturing.
  • Fundamental Research: Quantum physics and material science studies requiring precise magnetic field measurements.

The optical magnetometer sensor based on optical multipixel technology is a revolutionary tool for modern magnetic field detection. By combining sensitivity, precision, and compactness, it paves the way for innovative applications across various domains. Future developments aim to enhance scalability and integrate machine learning for even more sophisticated data analysis.